

MVA004 - Geometric Dimensioning and Tolerencing

Course outcomes:

- To provide an overview of how computers are being used in mechanical component design
- To understand the application of computers in various aspects of Manufacturing viz.,
- Design, Proper planning, Layout & Material Handling, Dimensioning and tolerance.

Syllabus:

- I. Introduction to Geometric Dimensioning and Tolerancing
- A. Terms and symbols
- B. Feature control frames
- C. Material condition modifiers
- D. Tolerance zones
- E. Position tolerance verification
- F. Taylor Principle
- II. Datum Reference Frame Theory
- A. Datum simulators
- B. Datum modifiers
- C. Datum targets
- D. Hole pattern establishing a datum
- III. Form Tolerances
- A. Flatness
- B. Straightness of surface line elements
- C. Straightness of an axis or median plane
- D. Circularity (roundness)
- E. Cylindrically
- IV. Orientation Tolerances
- A. Parallelism
- B. Perpendicularity
- C. Angularity
- V. Profile Tolerances
- A. Bilateral profile

CERTIFICATION COURSES

- B. Unilateral profile
- C. Profile of a line
- D. Profile of a surface VI. Position Tolerances
- A. Cylindrical tolerance zones
- B. Rectangular tolerance zones
- C. Position boundary concept
- D. Composite position tolerance
- VII. Coaxial and Non-Cylindrical Controls
- A. Run out tolerance
- B. Position tolerances for coaxial features
- C. Concentricity tolerances D. Symmetry tolerances

Reference Text Books

- 1. James D Meadows, "Geometric Dimensioning and Tolerancing", Marcel Dekker, Inc
- 2. James D Meadows, "Measurement of Geometric Tolerances in Manufacturing" Marcel Dekker, Inc
- 3. P S Gill, "Geometric Dimensioning and Tolerancing", S K Kataria & sons, 2005-6.